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PREFACE 

As part of its Project RAND research program, RAND 

engages in basic supporting studies in mathematics. The 

present Memorandum treats two problems concerning (0,1)- 

matrices, i.e.« rectangular arrays of numbers« each 0 or 1 

Many problems in pure and applied mathematics depend on 

the properties of such matrices. 
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SUMMARY 

Consider a round robin tournament In which each player 

plays one game with every other player« and assume that 

each game ends in a win for one of the players. The 

results of such a tournament can be recorded in a square 

(0, l)-matrix T - (tj^) by setting t.. - 1 or 0 according 

as player i defeats or loses to player J, and t.. ■ 0. 

This Memorandum studies the class of all tournament matrices 

having prescribed row sums ' i< ?2 - * * * - rn * In ^&r* 

ticular, simple constructions are given for two specific 

matrices f and T in this class. The matrix 7 minimizes 
m 

the number of I's above the main diagonal,  and T maximizes 

the number of I's above the main diagonal.    Using the theory 

of minimal cost flows in networks, results about the block 

structure of 7 and f are deduced. 
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1.     INTRODUCTION 

Consider a round robin tournament In which each of n 

players Is required to play precisely one game with each 

other player, and assume that each game ends In a win or 

a loss.    The results of such a tournament can be conven- 

iently recorded In a square (0, 1)-matrix T - (tjj) of 

order n by setting t^* - 1 If player 1 defeats player j, 

tji  ■ 0 If player 1 loses to player j, and t^ - 0.    Thus 

T has O's along the main diagonal,  and In the off-diagonal 

positions T satisfies the "skew-symmetry" condition that 

tj.  ■ 1 if and only if t^ - 0.    We call such a (0, 1)- 

matrix T a tournament matrix. 

Tournament matrices have received attention in [1 - 4]. 

In particular, Ryser  [4] has studied the class of all n 

by n tournament matrices having specified row sums ri, 

where 

(1.1) O^^S^S'-'S1!!-11"1 * 

The 1-th row sum of T represents the total number of wins 

for player 1, and the 1-th column sum represents his losses 

Thus, denoting the i-th column sum by s^, we have 

(1.2) r4 + s., - n - 1 , 
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and the monotonicity assumption (1.1) Implies 

(1.3) n - 1 > s-, > s« > ... > s > 0. 

Wlth the notation chosen as In (1.1), a 1 above the main 

diagonal of T means that a player has defeated another who 

has a better (or at least no worse) win record, that is, 

an upset occurred. One of the results of [4] Is an explicit 

formula for the minimum number T of upsets that /buld 

have occurred, given the Integers r.: 

(1.4) T »l[Tt  - (1 - 1)] , j 

\ 

the summation being over all 1 such that r^ > 1 •> 1.    It 

Is clear that the sum In (1.4) Is a lower bound for the 

number of upsets.    That this bound can always be achieved 

Is established In [4] by deducing the existence.  In the 

class of all tournament matrices having row sums r., of 

a tournament matrix having the property that If row 1 

contains a 0 In one or more of the positions 1,  2,   ...| 1-1« 

then row 1 contains only O's In the remaining positions, 

for 1 ■ 1,  2,   ..., n.    In Sec.  2 we give a simple and 

direct construction for such a tournament matrix ?,  thereby 

providing an easier proof of (1.4).    We then go on In Sec.  3 
m 

to  show that the problem of finding a tournament matrix T 

which maximizes the number of upsets can also be solved 

by an equally simple construction. 
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Both the minimum and maximum problems described above 

can be formulated as minimal cost flow problems In suitable 

networks. The concluding Sec. 4 discusses this and Indicates 

how the duality theorem of linear Inequality theory can be 

applied to deduce results about the structure of ? and T. 

2.  THE MINIMUM NUMBER OF UPSETS 

Let 

(2.1) R - (vl,  r2, ..., rn) 

denote the given row-sum vector whose components r, are 

arranged monotonely as In (1.1)« and let 

(2.2) y- ^(R) 

denote the class of all tournament matrices having row-sum 

vector R and column-sum vector 

(2.3) S - (s1, s2, ..., sn) . 

The components of R and S of course satisfy (1.2). It Is 

known that the class (2.2) Is nonempty If and only if the 

Inequalities 

(2.4) ^ + r2 + ... + re > 
e^ml) 

hold for e ■ 1, 2,   ..., n, the last with equality. The 
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necessity of the conditions (2.4) is obvious«  and sufficiency 

has been established in various ways  [1 - 4]. 

Let T - (t^) be in ^(R).    Since,  for i f j,  t^  - 1 

if and only if t^ - 0,  and t^ - 0,  it follows that for 

each 1 ■ 1,  2,  . •.«  n, 

(2.5) 2 t^ -    2 t..   - r4  -  (i-1)  . 
J>i 1J      j<i J1        i 

Conversely, if T is a tournament matrix whose elements above 

the main diagonal satisfy (2.5), then T is in ^(R). Our 

construction for a tournament matrix ^f Which minimizes upsets 

over all matrices in ^(R) will be based on (2.5), and hence 

we shall deal primarily with the vector 

(2.6) A ■ (a^ a2, ..., an) 

whose components a* are given by      -^ 

(2.7) f±  - vt  - (i-1) . 

The validity of Theorem 2.1 below. Which rephrases the 

existence conditions (2.4) in terms of the vector A, is 

readily checked. 

Theorem 2.1.    Let A - (a^, a2»  •.«* a^) have components 

defined by (2.7).    Then 
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(2.8) al >  0, a1-i •* «^ < li 1 - 2, 3, ..., n. 

The class ^(R) is nonempty If and only if the inequalities 

(2.9) a1 + a2 + ••• + ae > 0, e ■ 1, 2, ..., n , 

hold, the last with equality. 

Conditions (2.8), which assert that the components of 

A can decrease by at most 1, reflect the monotonicity 

assumption on the components of R. 

We now describe a construction for a specific matrix 

T in >r(R). From (2.5), with i ■ n, we see that the last 

column of f contains sÄ - -a„ I's. We insert these 1's in n   n 
certain positions corresponding to positive components of 

the vector A, as follows. Find the first member of the 

last consecutive string of positive components of A. Starting 

with this position in column n of the matrix 7 to be constructed, 

insert I's consecutively downward until either -an I's have 

been inserted or this string of positive components of A 

has been exhausted. In the latter case, find the first 

member of the next-to-last consecutive string of positive 

components of A, and continue inserting I's as above. When 

-a I's have been inserted in column n in this fashion, define n 
a new vector A' having n-1 components by 

, a.t-1 if column n has a 1 in position i, 
(2.10) ai - I 1   „u  ,4 v   ' i  *. a^   otherwise. 



for i - 1, 2, ..., n-1. We may then fill in the last row 

of f  as the complement transpose of the last column. The 

entire procedure is then repeated using A* and the un- 

determined portion of column n-l, and so on. 

The schema below (Fig. 2.1) illustrates the construc- 

tion for 

R - (1, 2, 3, 3, 3, 6, 6, 6, 6) 

A - (1, 1, 1, 0, -1, 1, 0, -1, -2) . 

1 2 3 4 5 6 7 _8_ 9 9 8 7 6 5 4 3 2    ^ 

1 ^ sp 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0    0 
2 \ sp 0 0 0 0 1 0 1 1 0 0 0 0 0 0 
3 \ <> 1 0 0 0 0 1 1 1 1 1 0 0 
4 1 \ 0 0 0 0 0 0 0 0 0 0 0 
5 0 \ 0 0 0 0 -1 -1 -1 -1 -1 
6 1 1 \ 0 0 1 1 0 0 0 
7 1 1 1 \ 0 0 0 0 0 • 

8 0 1 1 1 1 \ 0 -1 -1 
9 0 1 1 1 0 1 1 

\ 
-2 

Fig. 2.1 

We now verify that the construction produces a matrix 

T in ^(R). In view of (2.5) and (2.10), this will surely 

be the case provided the construction can be carried out 
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as described.  To show that It can be, we may proceed 

inductively.  We note first of all that (2.8) and (2.9) 

imply that A has at least -a positive components, so the 

I's can be inserted in column n as described.  It now 

suffices to establish that the vector A* defined by (2.10) 

again satisfies (2.8) and (2.9).  That A' satisfies (2.8) 

is obvious from the fact that we start with the first 

member of a string of positive components of A and work 

downward in reducing components of A. It remains to verify 

that A* satisfies (2.9).* Clearly 

(2.11) a[ + aj + ... + a'nml  - 0 . 

Thus if (2.9) were violated, there would be an integer 

e in the interval 

(2.12) 1 < e < n-2 

such that 

(2.13)   a^ + aj + ... + a^ < 0 

I am indebted to T.  A.  Brown for the following 
simple proof that the components of the reduced vector A1 

satisfy (2.9). 
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Hence a < 0. We may assume In (2.13) that 

(2.14) a; < 0, a;+1 > 0 . 

For if this were not so, we could easily locate another 

integer e in the interval (2.12) for which (2.13) and (2.14) 

hold. 

Let 

(2.15) a^ + aj + •.. + a^ ■ a1 + a2 + •.. + ae - P , 

(2.16) a;+1 + a;+2 + ... + a^ - ae+1 + ae+2 + ... + an-1 - q 

for nonnegative integers p and q satisfying 

(2.17)   p + q - -an 

By (2.11) and (2.13) we have 

(2.18)   a;+1+a;+2 + ... + a^ > 0 , 

and hence 

(2.19)        "e+l +ae+2 + ••• +an.l>0 
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It now follows from (2.8), (2.14), and (2.19) that the 

sequence a .n, a .«^ •••* an-l ^as Inore t^an  "an-l P08^^6 

members, and hence has at least -a positive members. 

Consequently, using (2.14), we see that our procedure for 

defining A' implies q ■ -a , p - 0. Thus a, + a« + • • • + ae "^ 0* 

contradicting the fact that A satisfies (2.9).  Hence A* 

satisfies (2.9). 

Theorem 2.2. The matrix f  is in ^(R) and minimizes 

the number of 1's above the main diagonal over all matrices 

in -r(R). 

It remains only to check the last assertion of Theorem 

2.2.  But this is immediate, since T clearly has 

7 « S ai - Z[ri  - (i-1)] 

I's above the main diagonal, the summation being over all 

i such that a. > 0. 

We also point out that the construction for 1? provides 

an independent proof of Theorem 2.1. 

3.  THE MAXIMUM NUMBER OF UPSETS 

In constructing the tournament matrix ?, we worked 

with elements above the main diagonal so as to minimize the 

number of I's which could be inserted to satisfy the con- 

straints (2.5). We now shift attention to elements below 

the main diagonal, our aim being to minimize the number 

of I's required to satisfy the constraints 
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cs.i)    St..- S t.j ■ r. - (n-1),  i - 1, 2, ..., n, 
j<i ^  j>i J1   1 

which also characterize, via ikew-symmetry« a matrix 

T ■ (tjO In ^(R). Since minimizing the number of i's 

below the main diagonal Is equivalent to maximizing the 

number of I's above the diagonal« we are here concerned 

with the maximum possible number of upsets. 

Let 

(3.2)    B - (b1, b2, ..., bn) 

have components defined by 

(3.3)    bi a ri " O1"1)'  1 " 1* 2, ..., n . 

The monotonic!ty assumption (1.1) on components of R 

Implies 

(3.4) -(n-1) < ^ < b2 < ... < bn , 

and the existence conditions (2.4) imply 

(3.5) b1 + b« + ••• 
+ be > e(e-n),  e - 1, 2, ..., n, 

with equality for e » n. However, we shall make no explicit 

use of (3.5) in verifying that the construction of this 
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section produces a matrix In   >(R).    The construction will 

not,  in any event, maintain the strict monotonicity of 

(3.4)  for the reduced vector Bf  defined below,  although 

it will preserve monotonicity of components of B' . 

Our argument will use interchanges   [4],  which we 

shall think of as being generated by elements below the 

main diagonal.    Suppose we have a (0,   l)-solution t.., 

i > j,  of equations   (3.1).     Let 

(3.6) t,    \  >   *-*     \  »   *■*    4  *   t*     \ 

be alternately 0 and 1 (or 1 and 0) in this solution. 

Then interchanging O's and I's in (3.6) gives another 

(0, l)-solution to (3.1).  Call this operation an inter- 

change involving the positions 

(3.7) (i^j^, (i1,j2), (i2.J2>' tta'V ' 

Another type of four-way interchange involves the positions 

(3.8) (i^jp, ^v^)*   (J2^i)* ^V^  > 

where again the four corresponding values of t. . are 

alternately 0 and 1 (or 1 and 0). Finally, a third type 

of interchange involves the three positions 
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(3.9)    (IpJx), (Ig^x)* (i2^i) > 

again the three corresponding values of t. ♦ being alternately 

0 and 1 (or 1 and 0). Each of these interchanges produces 

another (0, 1)-solution to equations (3.1)* Hence perform- 

ing an interchange and its skew-symmetric mate changes a 

matrix T in T{K)  to another matrix T' in ^(R). It is 

shown in [4] that one can pass through the class Jr(R) by 

interchanges of these types.  (Actually, a four-way inter- 

change can be accomplished by a sequence of two three-way 

interchanges, but we find it convenient to ignore this 

fact.) 

We now describe the construction of a particular 

matrix T in ^(R). The first column of T contains s^ • -b^ 

I's. We insert these I's in positions corresponding to the 

-b, largest components of B, with preference given to 

topmost positions in case of equal components. Then define 

a new vector B' having n-1 components by 

b.-l if a 1 has been inserted in position i , /•L*. — A        x J.    o    x    lias 

(3.10)        b^ -|bi        otherwise , 

for i ■ 2, 3, ..., n. We may then fill in the first row 

of T by skew-symmetry. The procedure is then repeated 

using B1 and the undetermined part of the second column, 

and so on. 
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The schema of Fig.  3.1 below Illustrates the con- 

struction for 

R - (1,  2,  3,  3, 3,  6,  6, 6,  6) 

B - (-7,  -5,  -3,  -2,   -1,  3, 4,   5,  6)   . 

-7 IV 0 0 0 0 0 0 ol 
-5 -5 0\ 

1 1 0 0 0 0 0 
-4 -4 -3 1    0 1 1 0 0 0 0 

-3 -3 -3 -2 1    0 0 \ 1 1 0 0 0 
-3 -3 -3 -2 -1 0 0 \ 0 1 0 0 

-1 0 0 1 2 3 0 1 \ 1 1 0 
0 0 0 1 2 3 4 1 0 0 \ 1 1 

0    0 0 1 2 3 4 5 1 1 0 0 \ 1 
0    0    0 1 2 3 4 5 6 1 1 1 0 0 <J 
9    8    7 6 5 4 3 2 1 1    2 4 5 6 7 8 9 

Fig.  3.1 

Notice in the example of Fig.  3.1 that the "tie- 

breaking" part of the construction Which gives preference 

to topmost positions in case of equal components was used 

in assigning the I's in column 5.    This part of the rule 

maintains mono tonic ity of components of the new vector B*, 

although not the strict monotonicity satisfied by components 

of the starting vector, of course.    The fact that strict 

monotonicity may not be preserved means that the minor of 
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T which corresponds to the new vector may not have monotone 

row sums.  For example, deleting the first and second rows 

and columns In Fig. 3.1 leaves a minor whose row sums are 

not monotone. This is to be contrasted with the construc- 

tion of Sec. 2, where monotonicity of row sums was preserved. 

We now prove that the construction produces a matrix 

T in jr(K)  which maximizes upsets.  To this end, let T be 

a tournament matrix in -^(R) which minimizes the number 

of I's below the main diagonal. We shall show that the 

first column of T can be made to coincide with that of 

T by performing four-way Interchanges on T. Let the 

bottommost 1 of the first column of T be in position e. 

Suppose e < n, so that 

(3.11)   tel - 1, te+1>1 - 0 . 

We have 

(3.12)    St.- 2 t. - b < b , -  2 t +1 . -  St,. 
j<e eJ  j>e Je   e   e+i  j<e+l e+i,J  j>e+l 3*e*L 

It follows from (3.11) and (3.12) that either there is an 

integer j such that 

(3.13)   e < j < n,  tje - 1, tj e+1 - 0 , 

or there is an integer i such that 
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(3.14)        1 < i < c,    tei - 0.     te+1)1 - 1 . 

Suppose (3.13) holds.    Then J  ^ e + 1,   for otherwise an 

Interchange Involving the three positions 

(e,  1),     (e + 1,  1),     (e + 1, e) 

produces a matrix in ^"(R) having fewer I's below the 

diagonal than does T, contradicting our assumption on T. 

Hence j > e + 1 in (3.13). We may now perform a four- 

way interchange involving the positions 

(e, 1),  (e + 1, 1),  (j, e),  (j, e + 1) . 

This lowers the position of the bottommost 1 in the first 

column of T and yields a new matrix having the minimum 

number of I's below the main diagonal.  Similarly, if (3.14) 

holds, a four-way interchange involving the positions 

(e, 1),  (e + 1, 1),  (e, i),  (e + 1, i) 

accomplishes this also. Repetition of this argument shows 

that the I's in the first column of T can be brought to 

appear consecutively at the bottom by four-way interchanges, 

thereby producing a new matrix T' in ^(R) having the mini- 

mum number of I's below the diagonal. 
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It is important to note that we did not require the 

strict inequality b < b .. in (3.12) for the above argument, 

but used only the fact that b < b +,. This means that we 

can repeat the argument on the second column, using the 

vector B1, and so on. For later stages of the argument, 

we need also to observe that in case the I's in a column 

of T do not all appear consecutively at the bottom (because 

of the tie-breaking rule for equal components), we can first 

bring all I's to the bottom by interchanges which affect 

adjacent rows, and then raise an appropriate number of I's 

by similar interchanges, since we will be working with 

equal components of the reduced vector in the raising 

process. 

Thus T can be transformed into T by four-way interchanges, 

and consequently T minimizes the number of I's below the 

diagonal. This proves 

Theorem 3.1. The matrix T is in ^(R) and maximizes 

the number of I's above the main diagonal over all matrices 

in -^(R). 

In contrast with the situation for the minimum number 

of upsets T, we do not have a simple formula for the maxi- 

mum number of upsets T. In terms of the discussion in 

Sec. 4, this is because the rule for constructing T involves 

"transshipment" in satisfying "demands" from "supplies," 

whereas the rule for constructing T does not. 
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4. FLOWS, DUALITY, AND NORMAL FORMS 

Let A  he a  directed graph consisting of nodes 

1, 2,   ..., n and directed arcs Ij (from 1 to j). Suppose 

that each arc Ij of If has associated with It two non- 

negative numbers c.., a.., and that each node t of   if 

has associated with It a number a.. We call c.. the 

capacity of arc Ij, a*, the unit cost of flow In Ij, 

and a. the supply or demand at node 1 according as a. > 0 

or ai < 0. We shall assume that 

(4.1)    a^^ + a2 +...+ an - 0. 

A feasihle flow X - (xiO ^n 6  is a real vector 

having one component for each arc Ij, which satisfies the 

equations and Inequalities 

(4.2)    2 (x^ - x.p - a^        1 - 1, 2, ..., n. 

0 < x.. < c..,        all arcs Ij 

If, In addition, X minimizes the flow cost 

(4.3)        ^ ay Xy 

over all feasible flows, we call X a minimal cost flow. 

We refer the reader to [1, Chapter III] for a discussion 



-18- 

of various iterative methods for constructing minimal cost 

flows.  In particular, it is well known that if the supplies 

and demands a. and the arc capacities c. . are integers, 

then there is a minimal cost flow X ■ (x±\)  whose ccmponents 

x. . are integers. 

Both the minimum and maximum problems of Sees. 2 and 

3 can thus be viewed as minimal cost flow problems in 

appropriate (acyclic) directed graphs, as suggested by 

(2.5) and (3.1).  For the minimum upset problem, we may 

take the graph to consist of nodes 1,   2,   ..., n with all 

arcs of the form ij, where i < j.  Each arc ij has c.. - aL±\m ^> 

and node i has supply (demand) ai " ri " (1-1). Theorem 

2.1 gives necessary and sufficient conditions for feasibility 

of the supplies and demands, the condition being that the 

cumulative net supply must be nonnegative.  Theorem 2-2 

shows that the flow X whose components are given by the 

elements of T which lie above the main diagonal is a mini- 

mal cost flow. This flow involves no transshipment, that 

is, x. . > 0 implies that node i is a supply node and node 

j is a demand node.  Consequently the minimal flow cost 

is given by 

T - S ai , 

where the summation is over supplies a.. 

For the maximum upset problem, we take the graph /f 
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to consist of nodes 1, 2,   »•.,  n, with supplies and demands 

given by ^^ ■ r^ - (n-1), and arcs Ij, where 1 > j, with 

capacities and unit costs c. . ■ a, , « 1. The elements 

below the main diagonal of the matrix f then give a mini- 

mal cost flow X. This flow does Involve transshipment. 

For example. In Fig. 3.1, node 1 receives shipments from 

nodes 3, 4, 3, which are themselves demand nodes. 

The linear programming duality theorem can be applied 

to these minimal cost flow problems to deduce Information 
*>* mm 

about the structure of T and T.    Consider the minimum 

upset problem.    The dual of this can be formulated as 

follows.    Find numbers TT.,  1 - 1,  2,   ..., n,  and non- 

negative numbers a  .,   for 1 < j, which maximize the dual 

form 

(4.4) S a.n.  - S a.. 
i    i i      ^  ij 

subject to  the dual constraints 

(4.5) T^ - TTj - a^ < 1, (1 < j,  l,j - l,2,...,n)  . 

It is apparent  crom (4.4) and (4.5) that we may set 

(4.6) a  .  ■ max (0, H.-TT.-I)  , 

and thus the dual problem becomes that of maximizing the 
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(unconstrained)  function 

(4.7) 2 a.rr.   -    2 max  (0, TT.   - n.   - 1)  . 
i    i l      ij 1        J 

The results of  [4] and Sec.   2 show that an optimal 

solution to the dual problem is given by 

(4 
fl      if a.  > 0 

•8) n^ 
1      ^0      if ai < 0  . 

(It is not an accident that optimal n. turn out to be 

integers.  This is always the case for minimal cost flow 

problems in which the a., are integers.) That (4.8) con- 
«I 

stitutes an optimal solution to the dual problem follows 

from the fact that   (4.8)  inserted in  (4.7) and X in (4.3) 

produce equality between primal and dual forms, 

(4.9) s *. .   * s a^4  m    s max  (0* IT.  - n.  - 1)  , 
ij    iJ       i    1 1      ij 1        J 

both sides of (4.9) being equal to T. 

The optimal dual solution n given by (4.8) can be 

used to obtain, via well-known optimality properties for 

the pair of dual linear programs being dealt with here, 

certain information about the structure of a minimal cost 

flow, hence of T.  Since X and n are optimal in their 

respective programs if and only if 
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(4.10) 
n1 - TT. < 1      implies     xij " 0    (i < J) » 

n^ - n. > 1      implies     x^ - 1    (i < J) , 

it follows  that a matrix T which minimizes upsets has the 

form illustrated in Fig.  4-1 below.    Conversely,  any 

tournament matrix in  >(R) having this form minimizes 

upsets. 

II- 
X 

1 

0 

1 

0 

1 

\p     «       o       *       0       # 

ix  
* Yv    oooo 

i      i   ^S°    «      o      ♦ 
V o 

* 1      *     x     o      0 
 L-S,  

iiii      x    * 
  l\ 
♦        1*1«      \ 

IN 

a. > 0 

a. < 0 

ai > 0 

a. < • 0 

a. > 0 

a- < 0 

Fig.  4.1 
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In Fig. 4.1, 1 stands for all elements 1, 0 for all elements 

0, and * for undetermined portions.  The partitioning is 

determined solely by the positivity and nonpositivity of 

the ajt  as shown.  (Rows corresponding to a. « 0 could be 

included in either way.) Note that this form precludes 

transshipment; that is, it has the minimizing property 

deduced in [4], namely that if row i has a 0 in its initial 

segment (i, 1), (i, 2), ..., (i, i-1), then it has only 

O's in its terminal segment. 

We turn now to the maximum upset problem, expressed 

as a minimal cost flow problem.  The dual of this problem 

is that of finding TT . i « 1, 2, ..., n, and nonnegative 

a.., i > j, which maximize 

(4.11) Z  b.TT. - S a.. 
i i i  ij ij 

subject to the constraints 

(4.12) ni - n.   - a^ < 1, (i > j;   i,  j   - 1,   2,   ...,  n) 

Again we may assume  (4.6),  so that the dual problem asks 

for the  (unconstrained) maximum of the function 

(4.13) g(n)  « 2 b.TT.   - S    max  (0, rr   - TT.   -  1)   . 
i    1 1      ij i        J 

It suffices to consider vectors n ■ (rr,, TT«! •••* TT ) 
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havlng integral components rr. in (4.13)« as noted in the 

discussion of the minimum upset problem. 
n 

In view of the condition lb.  «0, replacing TT. by 
i-1 1 1 

TT. + k, i ■ 1, 2, ..., n, does not change (4.13), and hence 

we may deal with nonnegative integers n.. Wc shall show, 

in fact, that optimal n- may be assumed to satisfy 

(4.14) 0 " ^i 5 ^2 - '" - TTn 

and 

(4.15) TTi+1 - Hj < 1, i • 1,  2,   ..., n-1 . 

To establish (4.14),  suppose that 

(4.16) TTe+1<ne 

for some e.    Let 

11      ■   (n^,   TT2*    •••>   ne,   TTe+^,    ...,   TTn)    , 

n     ■   (TT^,   TT2*    ••«,   ^Q+y   ^Q*    '••*   TT^)   . 

Then 

g(n') - g(n) - "e+1be + nebe+1 - nebe - T,e+1be+1 

- max (0,Tie - TTe+1 - 1) + max (0, "p+i"",.-1) 



-24- 

By (4.16),   this becomes 

gdi') - g(n) - (TTe - ne+1)(be+1 - be - 1) + 1 . 

Hence,   since b    < b   ,,, 

gCn') - g(n) > 1 . 

Consequently, interchanging adjacent components of fi which 

satisfy  (4.16) increases   (4.13)*    This proves   (4.14). 

For  (4.13),  assume 

(4.17) TTe+l^ne+2 

for some e,  and let 

II - (TT^, ^2*   •••* ^Q» ^g+i'   •*•' ^n)  * 

H1" (n^, TT2»   •••* ne, TTg+i"!*   •••* TTn"^^  * 

the components of n being monotone.    Then 

(4.18) gOl') - g(n) - 

n n 

i-e+1 
- 2   b.  +     2        2  [max (0,TT.-TT.-1)  -max (0,7X4-n4-2)1. 

1      i-e+1 j»l ^    3 1    J 
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By (4.14) and (4.17), each term in the double sum of (4.18) 

Is at least 1, and hence 

(4.19)   gdl') - g(n) > - 2 b. + e(n-e) . 
" i-e+1 1 

By (3.5), the right side of (4.19) is nonnegative. Hence 

we may assume (4.15). 

It follows now from (4.14), (4.15), and the 

optimality properties (4.10) that a tournament matrix T 

which maximizes upsets has the form illustrated in 

Fig. 4.2 below, and conversely. 

n- o 3   4 

1 

2 

3 

4 

k 4 0 0 0 

« V « 0 0 

1 « X « 0 

1 1 « V « 

1   1 1 1 « vj 
Fig. 4.2 
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For example,   the matrix T of Fig.  3.1 has  the partitioned 

form 

n 
i 
o 

-001112223 

1 
1 
2 
2 
2 
3 

XI 

Nil 

1 N*    1 

1 x. 1   l 
1       1 Ny 1 
111 1    \1       1 
1111 N.    1     1 

JL 1111 N^   1 
111111 \ 

The partitioning is not in general unique.     For instance, 

another optimal dual solution in this example is given by 

TT1 " 0' TT2 " ^  TTß * ^ " TT5 * 2'  TT5 * TT7  * TT8 * ^, n9 * ^   * 
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